Generalised Hill-Wheeler ansatz and the eigensolutions of the one-dimensional Schrodinger equation

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1988 J. Phys. A: Math. Gen. 21895
(http://iopscience.iop.org/0305-4470/21/4/018)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 01/06/2010 at 06:37

Please note that terms and conditions apply.

Generalised Hill-Wheeler ansatz and the eigensolutions of the one-dimensional Schrödinger equation

C Esebbag \dagger, J Nuñez ${ }^{\dagger}$ and A Plastino \dagger
Physics Department, La Plata National University, CC 67, La Plata 1900, Argentina

Received 9 June 1987, in final form 14 September 1987

Abstract

A rather powerful method, based upon the theory of distributions and the Hill-Wheeler ansatz, is introduced in order to deal with the eigensolutions of the most general one-dimensional Hamiltonian $\hat{H}=\hat{p}^{2} / 2 m+V(\hat{x})$, and illustrated with reference to two special (but important) examples.

1. Introduction

It is well known that Schrödinger's equation, even in the one-particle, one-dimensional case, rarely possesses an exact (analytical) solution. Consequently, an enormous amount of work has been devoted, over several decades, in order to develop, analyse, study and apply different approximate schemes. The eigensolutions of even the simplest (one-dimensional) Hamiltonian

$$
\begin{equation*}
\hat{H}=\hat{p}^{2} / 2 m+V(\hat{x}) \tag{1.1}
\end{equation*}
$$

deserve careful scrutiny, in view of their relevance in many branches of physics and chemistry (for a small reference sample see, for instance, Banerjee et al 1978, Bender and Wu 1969, 1973, Biswas et al 1971, 1973, Boyd 1978, Bozzolo and Plastino 1981, Bozzolo et al 1982a, b, 1984, Chan et al 1964, Fung et al 1978, Gillespie 1976, Graffi et al 1970, 1971, Graffi and Grecchi 1973, Halpern 1973, Hioe et al 1976, Jaffe 1965, Kinkaid and Cohen 1975, Lu et al 1973, Strysewski and Giordano 1977) and efforts in the relevant fields are currently being carried out by numerous investigators.

In this work we wish to present a simple and accurate method for dealing approximately with (1.1), with no restrictions attached in respect of the functional appearance of $V(x)$. The paper is organised as follows.

In § 2 we briefly sketch the Hill-Wheeler method and discuss its generalisation in § 3. The appropriate generating functions are dealt with in $\S 4$, two relevant examples which illustrate our proposal are given in $\S 5$ and some conclusions are presented in $\S 6$.

2. The Hill-Wheeler ansatz

A very powerful scheme for tackling the many-body Schrödinger equation is that proposed by Hill and Wheeler (1953) and Griffin and Wheeler (1957), based upon the

[^0]ansatz
\[

$$
\begin{equation*}
|\psi\rangle=\int \mathrm{d} \alpha f(\alpha)|\Phi(\alpha)\rangle \tag{2.1}
\end{equation*}
$$

\]

where $|\Phi(\alpha)\rangle$, the so-called generating functions, are in general (although not necessarily) Slater determinants and the α-parameter(s) ('generating coordinate(s)') refer to specially chosen coordinates that supposedly describe the particular many-body phenomena one is interested in. The weight function $f(\alpha)$ is determined by the variational principle

$$
\begin{equation*}
\delta \frac{\langle\psi| H|\psi\rangle}{\langle\psi \mid \psi\rangle}=0 \tag{2.2}
\end{equation*}
$$

where the expectation value of \hat{H} and the normalisation factor can be written in terms of the 'Hamiltonian overlap kernel' (нок)

$$
\begin{equation*}
h(\alpha, \beta)=\langle\Phi(\alpha)| \hat{H}|\Phi(\beta)\rangle \tag{2.3}
\end{equation*}
$$

and the 'generator overlap kernel' (GOK)

$$
\begin{equation*}
n(\alpha, \beta)=\langle\Phi(\alpha) \mid \Phi(\beta)\rangle \tag{2.4}
\end{equation*}
$$

respectively as

$$
\begin{equation*}
\langle\psi| H|\psi\rangle=\int \mathrm{d} \alpha f(\alpha) \int \mathrm{d} \beta f(\beta) h(\alpha, \beta) \tag{2.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\langle\psi \mid \psi\rangle=\int \mathrm{d} \alpha f^{*}(\alpha) \int \mathrm{d} \beta f(\beta) n(\alpha, \beta) \tag{2.6}
\end{equation*}
$$

The variational principle (2.2) leads to the celebrated Hill-Wheeler (nw) equations

$$
\begin{equation*}
\int \mathrm{d} \alpha f(\alpha)[h(\beta, \alpha)-e \not b n(\beta, \alpha)]=0 \tag{2.7}
\end{equation*}
$$

which can be solved by recourse to well established techniques (see, for example, Faessler et al 1973). The Hill-Wheeler approach has been successfully applied to a wide variety of many-body problems (Ring and Schuck 1980), and it is our purpose here to take advantage of a recently proposed generalisation of this technique (Nuñez et al 1984) in order to find the eigensolutions of (1.1).

3. A generalised Hill-Wheeler ansatz

The idea of this generalisation is to assign to $f(a)$ the character of a distribution (Nuñez et al 1984)

$$
\begin{equation*}
f(\alpha)=\sum_{n=0}^{k} f_{n}\left(\alpha_{0}\right)(-1)^{n} \delta^{(n)}\left(\alpha-\alpha_{0}\right) \tag{3.1}
\end{equation*}
$$

so that, after the introduction of the so-called ' m-states' (Nunez et al 1984)

$$
\begin{align*}
\left|m, \alpha_{0}\right\rangle & =\int(-1)^{m} \delta^{(m)}\left(\alpha-\alpha_{0}\right)|\Phi(\alpha)\rangle \mathrm{d} \alpha \\
& =\left.\frac{\mathrm{d}^{m}}{\mathrm{~d} \alpha^{m}}|\Phi(\alpha)\rangle\right|_{\alpha=\alpha_{0}} \tag{3.2}
\end{align*}
$$

the following generalised ansatz ensues:

$$
\begin{equation*}
\left|\psi_{\mathrm{G}}\right\rangle=\sum_{m=0}^{k} f_{m}\left(\alpha_{0}\right)\left|m, \alpha_{0}\right\rangle \tag{3.3}
\end{equation*}
$$

It can be shown that the m-states provide us with a basis for the so-called collective subspace S_{c} of the Hilbert space (Nunez et al 1984), which is the smallest subspace that contains all the generating states $|\Phi(\alpha)\rangle$. Of course the limit $k \rightarrow \infty$ should be taken so as to deal with the entire subspace S_{c}.

Different approximations are obtained depending upon the number of terms (K value) considered in (3.3). Considerations involving computational accuracy and capability are to be employed in the selection of K (Nuñez et al 1984).

The variational principle

$$
\begin{equation*}
\delta \frac{\left\langle\psi_{\mathrm{G}}\right| H\left|\psi_{\mathrm{G}}\right\rangle}{\left\langle\psi_{\mathrm{G}} \mid \psi_{\mathrm{G}}\right\rangle}=0 \tag{3.4}
\end{equation*}
$$

leads to an eigenvalue problem for the moments $f_{m}\left(\alpha_{0}\right)$ of the distribution (3.1). We obtain

$$
\begin{equation*}
\sum_{n}\left\{H_{m n}\left(\alpha_{0}\right)-e \not b O_{m n}\left(\alpha_{0}\right)\right\} f_{n}\left(\alpha_{0}\right)=0 \tag{3.5}
\end{equation*}
$$

with

$$
\begin{align*}
& H_{m n}\left(\alpha_{0}\right)=\left\langle m, \alpha_{0}\right| \hat{H}\left|n, \alpha_{0}\right\rangle \tag{3.6}\\
& O_{m n}\left(\alpha_{0}\right)=\left\langle m, \alpha_{0} \mid n, \alpha_{0}\right\rangle . \tag{3.7}
\end{align*}
$$

Recourse to well known techniques provides us with a satisfactory solution to our problem. A particular aspect of our approach deserves special comment: no approximations are involved in writing down (3.5).

4. Generating functions and \boldsymbol{m}-states

In order to construct m-states appropriate for the problem at hand we need first of all to avail ourselves with suitable generating functions. We start with the boson operators entering the second-quantisation expression for the harmonic oscillator Hamiltonian

$$
\begin{equation*}
H_{0}=\hat{a}^{\dagger} \hat{a}+\frac{1}{2} \tag{4.1}
\end{equation*}
$$

and subject them to a displacement γ (a c-number)

$$
\begin{align*}
& \hat{b}^{*}=\hat{a}^{\dagger}-\gamma^{*} \\
& \hat{b}=\hat{a}-\gamma \tag{4.2}
\end{align*}
$$

since a general potential well(s) $V(x)$ will not necessarily be located at the origin. The vacuum of the \hat{b} operators $|0, \gamma\rangle \equiv|\gamma\rangle$

$$
\begin{equation*}
\hat{b}|0, \gamma\rangle=0 \tag{4.3}
\end{equation*}
$$

is an extremal state in the Fock space and thus a coherent 'ground' (or 'extremal') state (Gilmore 1974, Arecchi et al 1972), which in the coordinate representation will have a Gaussian shape. This Fock space is spanned by the basis

$$
\begin{equation*}
\left(\hat{b}^{+}\right)^{j}|0, \gamma\rangle \equiv \sqrt{j!}|j, \gamma\rangle \quad j=0,1,2 \ldots \tag{4.4}
\end{equation*}
$$

in which we shall express our generating functions as

$$
\begin{align*}
& |\beta\rangle_{\mathrm{e}}=\exp \left[\frac{1}{2} \beta\left(\hat{b}^{\dagger}\right)^{2}\right]|0, \gamma\rangle \tag{4.5a}\\
& |\beta\rangle_{\mathrm{o}}=\hat{b}^{\dagger}|\beta\rangle_{\mathrm{e}} \tag{4.5b}
\end{align*}
$$

where β is a real parameter (to be presently related to the generating coordinate) and the subscript e(o) indicates that the corresponding state is even (odd). The state (4.5a) is the vacuum of the operators

$$
\begin{align*}
& \hat{B}=\left(1-\beta^{2}\right)^{-1 / 2}\left(\hat{b}-\beta \hat{b}^{+}\right) \\
& \hat{B}^{\dagger}=\left(1-\beta^{2}\right)^{-1 / 2}\left(\hat{b}^{+}-\beta \hat{b}\right) \tag{4.6}
\end{align*}
$$

i.e.

$$
\begin{align*}
& \hat{B}|\beta\rangle_{\mathrm{e}}=0 \tag{4.7}\\
& \hat{B}^{\dagger}|\beta\rangle_{\mathrm{e}}=\left(1-\beta^{2}\right)^{1 / 2}|\beta\rangle_{\mathrm{o}} .
\end{align*}
$$

The ket $b|\beta\rangle_{\mathrm{e}}$ has a Gaussian aspect in the coordinate representation

$$
\begin{align*}
& \langle Q \mid \beta\rangle_{\mathrm{e}}=\exp \left(-Q^{2} / 2\right) \tag{4.8}\\
& \langle Q \mid \beta\rangle_{\mathrm{o}}=Q \exp \left(-Q^{2} / 2\right)
\end{align*}
$$

where, if we choose γ to be real, Q is the eigenvalue of the (coordinate) operator

$$
\begin{equation*}
\hat{Q}=\left(\frac{1-\beta}{1+\beta}\right)^{1 / 2}(\hat{x}-C) \tag{4.9}
\end{equation*}
$$

with

$$
\begin{equation*}
C=\gamma\left(1-\beta^{2}\right) . \tag{4.10}
\end{equation*}
$$

If we choose as the generating coordinate the quantity

$$
\begin{equation*}
\omega=\left(\frac{(1-\beta)}{(1+\beta)}\right) \tag{4.11}
\end{equation*}
$$

and suitably redefine (4.5) in terms of it, we immediately find as the (coordinate representation) expression for our generating functions

$$
\begin{align*}
& \Phi_{\mathrm{e}}(\omega, x)=\langle x \mid \omega\rangle_{\mathrm{e}}=\exp \left(-\frac{1}{2} \omega(x-C)^{2}\right) \tag{4.12}\\
& \Phi_{\mathrm{o}}(\omega, x)=\langle x \mid \omega\rangle_{\mathrm{o}}=(x-C) \exp \left(-\frac{1}{2} \omega(x-C)^{2}\right)
\end{align*}
$$

We are now in a position to write down our m-states ($[m / 2]$ denotes the integer part of $m / 2$) as

$$
\begin{align*}
\left|m, \omega_{0}\right\rangle & =\frac{(-1)^{[m / 2]}}{2^{[m / 2]}}(x-C)^{m} \exp \left(-\frac{1}{2} \omega_{0}(x-C)^{2}\right) \\
& =\frac{\mathrm{d}^{[m / 2]}}{\mathrm{d} \omega^{[m / 2]}}\left|\omega_{\mathrm{e}(\mathrm{o})}\right| \omega=\omega_{0} \tag{4.13}
\end{align*}
$$

which in more explicit form is (notice that the subindex e(o) refers to the case m even (odd))

$$
\begin{align*}
& \left|2 n, \omega_{0}\right\rangle=\sum_{i=1}^{n} S_{2 i}^{(2 n)}\left(\omega_{0}\right)\left(\hat{b}^{\dagger}\right)^{2 i}\left|\omega_{0}\right\rangle \\
& \left|2 n+1, \omega_{0}\right\rangle=\sum_{i=1}^{n} S_{2 i}^{(2 n)}\left(\omega_{0}\right)\left(\hat{b}^{\dagger}\right)^{2 i+1}\left|\omega_{0}\right\rangle . \tag{4.14}
\end{align*}
$$

The coefficients S arise out of the derivatives in (4.5). An alternative expression can also be given in terms of the \hat{B} operators

$$
\begin{align*}
& \left|2 n, \omega_{0}\right\rangle=\sum_{i=0}^{n} P_{2 i}^{(2 n)}\left(\omega_{0}\right)\left(\hat{B}^{+}\right)^{2 i}\left|\omega_{0}\right\rangle \\
& \left|2 n+1, \omega_{0}\right\rangle=\frac{\left(\hat{B}^{\dagger}+\beta \hat{B}\right)}{\left(1-\beta^{2}\right)^{1 / 2}}\left|2 n, \omega_{0}\right\rangle \tag{4.15}
\end{align*}
$$

with appropriate coefficients P.
The relevant matrix elements (3.6) and (3.7) for the states defined in (4.13) are (in the case of the Hamiltonian (1.1))

$$
\begin{align*}
\langle m| \hat{H}|m+2 n\rangle= & \langle m \mid m+2 n\rangle\left(\frac{4 m(m+2 n)}{2(m+n)-1}-2(m+n)+1\right) \frac{\omega_{0}}{2}+\langle m| \hat{V}|m+2 n\rangle \tag{4.16}\\
& \langle m| \hat{H}|m+2 n+1\rangle=\langle m| \hat{V}|m+2 n+1\rangle \tag{4.17}\\
\langle m \mid m+2 n\rangle= & 2\left(-\frac{1}{2}\right)^{[m / 2]+[(m+2 n) / 2]} \frac{(2 m+2 n-1)!!}{\left(4 \omega_{0}\right)^{m+n}} \tag{4.18}\\
& \langle m \mid m+2 n+1\rangle=0 \tag{4.19}
\end{align*}
$$

with

$$
\begin{align*}
& \langle m| \hat{V}|m+2 n\rangle=\frac{(-1)^{[m / 2]+[(m+2 n) / 2]+m+n}}{(2 \sqrt{ } \pi) 2^{[m / 2]+[n / 2]}} \frac{\mathrm{d}^{m+n}}{\mathrm{~d} \omega_{0}^{m+n}} G_{+}\left(\omega_{0}\right) \tag{4.20}\\
& \langle m| \hat{V}|m+2 n+1\rangle=\frac{(-1)^{[m / 2]+[(m+2 m+1) / 2]+m+n}}{(2 \sqrt{ } \pi) 2^{[n / 2]+[m / 2]}} \frac{\mathrm{d}^{m+n}}{\mathrm{~d} \omega_{0}^{m+n}} G_{-}\left(\omega_{0}\right) \tag{4.21}
\end{align*}
$$

where G_{+}, G_{-}are appropriately constructed Laplace transforms of the potential $V(x)$

$$
\begin{align*}
& G_{+}\left(\omega_{0}\right)=L\left\{x^{-1 / 2}\left[V\left(C+x^{1 / 2}\right)+V\left(C-x^{1 / 2}\right)\right]\right\} \tag{4.22}\\
& G_{-}\left(\omega_{0}\right)=L\left\{V\left(C+x^{1 / 2}\right)-V\left(C-x^{1 / 2}\right)\right\} \tag{4.23}
\end{align*}
$$

5. Examples

We shall consider the following two examples:

$$
\begin{equation*}
V(x)=\frac{1}{2} x^{2}+\lambda_{1} x^{3}+\lambda_{2} x^{4} \tag{5.1}
\end{equation*}
$$

namely, a cubic plus quartic anharmonic oscillator and

$$
\begin{equation*}
V(x)=A\left(\mathrm{e}^{-2 x}-2 \mathrm{e}^{-x}\right) \tag{5.2}
\end{equation*}
$$

i.e. the Morse potential.

The selection of k in (3.1) is made according to the usual procedure one follows in facing generalised diagonalisation problems: one must be sure that the overlap matrix O of (3.5) has no zero eigenvalues. The size of k is then limited by the requirement that no such eigenvalue be smaller than a given positive constant $\varepsilon\left(10^{-6}\right.$ in this work). Of course, an a posteriori and rather obvious criterion is that of cutting the number of moments f_{n} in (3.1) when one verifies, by inspection, that 'convergence' has been achieved (Nuñez et al 1984).
Table 1. The cubic plus quartic anharmonic oscillator. Energies for different orders and coupling parameters.

λ_{1}	λ_{2}	Order	E_{0}	E_{1}	E_{2}	E_{3}	E_{4}
0.5	0.1	9	-0.255 323790	0.464359331	1.248679381	2.346432789	3.782327465
		15	-0.255477028	0.452258771	1.196278554	2.192411618	3.332150666
		20	-0.255 477259	0.452236430	1.196137185	2.191475677	3.328453666
5.0	1.0	9	-55.396844924	-48.302887939	-41.424 499570	-34.762 664987	-28.212 111872
		15	-55.396845 517	-48.302899 053	-41.425 155011	-34.782 041802	-28.394994972
		20	-55.396 845173	-48.302 899063	-41.425 156169	-34.782 102830	-28.396845618
50.0	10.0	9	-640.364 516561	-616.897582446	-593.620807341	-570.536630 331	-574.638 583374
		15	-640.364516576	-616.897582762	-593.620851062	-570.538220935	-574.653798678
		20	-640.364516576	-616.897582762	-593.620851064	-570.538221040	-574.653 802277
100.0	10.0	9	-10495.068 78374	-10447.71230485	-10400.40197750	-10353.13788674	-10305.920 11444
		15	-10495.068 78374	-10447.71230485	-10400.40197764	-10353.137912 52	-10305.920 22055
		20	-10495.06878374	-10447.712 30485	-10400.40197764	-10353.137912 52	-10305.92022055

Table 2. The Morse potential. Exact and GCM energies for different values of \boldsymbol{A}.

A		$E_{\text {exact }}$	E_{GCM}
1	E_{0}	-0.25	-0.2495991
3	E_{0}	-1.5179492	-1.5179435
	E_{1}	-0.0538476	0.0034002
10	E_{0}	-7.0877223	-7.0877222
	E_{1}	-2.7631670	-2.7624247
	E_{2}	-0.4386117	-0.2647723
15	E_{0}	-11.37701665	-11.37701663
	E_{1}	-5.6310500	-5.6309190
	E_{2}	-1.8850832	-1.8351763
	E_{3}	-0.1391166	-0.9522499
30	E_{0}	-24.77277442	-24.77277442
	E_{1}	-15.8183233	-15.8183169
	E_{2}	-8.86387212	-8.86063679
	E_{3}	-3.90942097	-3.69600879
	E_{4}	-0.954969824	1.13517818

The free parameters C and ω_{0} of the preceding section are chosen so as to comply with the rather obvious requirements

$$
\begin{align*}
& \frac{\partial}{\partial \omega_{0}}\left\langle 0, \omega_{0}\right| \hat{H}\left|0, \omega_{0}\right\rangle=0 \tag{5.3}\\
& \frac{\partial}{\partial C}\left\langle 0, \omega_{0}\right| \hat{H}\left|0, \omega_{0}\right\rangle=0
\end{align*}
$$

and the corresponding results are given in tables 1 and 2 , for the anharmonic and Morse cases respectively. We take advantage of the theorem of separation (of eigenvalues (Pilar 1968)) in order to provide upper bounds not only for the ground state but also for the excited states. The results are quite good and faithfully exhibit the power of our formalism.

6. Conclusions

The main idea of the present work has been that of adapting a rather powerful, recently developed many-body technique (Nunez et al 1984) to the study of the eigensolutions of a general one-dimensional Hamiltonian (1.1). The concomitant numerical work turns out to be very simple (just a diagonalisation of modest 'size') and the accuracy to be reached is limited only by the technical details of the computer one uses. It should be stressed that no restrictions are imposed on the form of the potential $V(x)$ contrary to other approximate treatments. From a more theoretical point of view it is also of interest to point out that in $\S 4$ we give a concrete example of an expansion (cf (4.15)) in terms of a basis that spans the so-called 'collective subspace' (Wong 1970, de Toledo Piza et al 1977). This subspace appears here in a natural fashion, without recourse to any sophisticated mathematical reasoning (Wong 1970, de Toledo Piza et al 1977). One may assert that the present approach is flexible enough to be employed in a wide variety of related problems.

References

Arecchi F T, Courtens E, Gilmore R and Thomas H 1972 Phys. Rev. A 62211
Banerjee K, Bhatnagar S P, Chouhury V and Konwall S S 1978 Proc. R. Soc. A 360375
Bender C and Wu T T 1969 Phys. Rev. 1841231

- 1973 Phys. Rev. D 71620

Biswas S N, Datta M, Saxena R P, Srivastava P K and Varma V S 1971 Phys. Rev. D 43617
-_ 1973 J. Math. Phys. 141190
Boyd J P 1978 J. Math. Phys. 191445
Bozzolo G, Esebbag C and Plastino A 1982a Phys. Rev. D 26801

- 1984 Kinam 611

Bozzolo G, Nuñez J and Plastino A 1982b J. Phys. A: Math. Gen. 15429
Bozzolo G and Plastino A 1981 Phys. Rev. D 243113
Chan S I, Stelman D and Thompson L E 1964 J. Chem. Phys. 412828
de Toledo Piza A F R, de Passos E J V, Galleti D, Nemes M C and Watenabe M M 1977 Phys. Rev. C 15 1477
Faessler A, Gruemmer F and Plastino A 1973 Z. Phys. 260305
Fung Y T, Chan Y W and Wan W Y 1978 J. Phys. A: Math. Gen. 11829
Gillespie G H 1976 Lett. Nuovo Cimento 1686
Gilmore R 1974 Rev. Mex. de Física 23143
Graffi S and Grecchi V 1973 Phys. Rev. D 83487
Graffi S, Grecchi V and Simon B 1970 Phys. Lett. 32B 631
Graffi S, Grecchi V and Turchetti G 1971 Nuovo Cimento B 9313
Griffin J J and Wheeler J A 1957 Phys. Rev. 108381
Halpern F R 1973 J. Math. Phys. 14219
Hill D L and Wheeler J A 1953 Phys. Rev. 891102
Hioe F T, McMillan D and Montroll E W 1976 J. Math. Phys. 171320
Jaffe A M 1965 Commun. Math. Phys. 1127
Kinkaid J M and Cohen E J D 1975 Phys. Rep. 22C 57
Lu P, Wald S S and Young B L 1973 Phys. Rev. D 71701
Nuñez J, Esebbag C, Martin M T, Rebollo L and Plastino A 1984 Z. Phys. A 318223
Pilar F L 1968 Elementary Quantum Chemistry (New York: McGraw-Hill)
Ring P and Schuck P 1980 The Nuclear Many-body Problem (New York: Springer)
Strysewski E and Giordano N 1977 Adv. Phys. 26487
Wong C W 1970 Nucl. Phys. A 147545

[^0]: \dagger Fellow of the National Research Council of Argentina (CONICET).

