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Generalised Hill-Wheeler ansatz and the eigensolutions of the 
one-dimensional Schrodinger equation 

C Esebbagt, J Nufiezi and A Plastinot 
Physics Department, La Plata National University, CC 67 ,  La Plata 1900, Argentina 

Received 9 June 1987, in final form 14 September 1987 

Abstract. A rather powerful method, based upon the theory of distributions and the 
Hill-Wheeler ansatz, is introduced in order to deal with the eigensolutions of the most 
general one-dimensional Hamiltonian H = d 2 / 2 m  + V ( P ) ,  and illustrated with reference to 
two special (but  important) examples. 

1. Introduction 

It is well known that Schrodinger’s equation, even in the one-particle, one-dimensional 
case, rarely possesses an exact (analytical) solution. Consequently, an enormous 
amount of work has been devoted, over several decades, in order to develop, analyse, 
study and apply different approximate schemes. The eigensolutions of even the simplest 
(one-dimensional) Hamiltonian 

A =p*’/2m + v(;) (1.1) 

deserve careful scrutiny, in view of their relevance in many branches of physics and 
chemistry (for a small reference sample see, for instance, Banerjee et a1 1978, Bender 
and Wu 1969, 1973, Biswas et a1 1971, 1973, Boyd 1978, Bozzolo and Plastin0 1981, 
Bozzolo et a1 1982a, b, 1984, Chan et a1 1964, Fung et a1 1978, Gillespie 1976, Graffi 
et a1 1970, 1971, Graffi and Grecchi 1973, Halpern 1973, Hioe er a1 1976, Jaffe 1965, 
Kinkaid and Cohen 1975, Lu et a1 1973, Strysewski and Giordano 1977) and efforts 
in the relevant fields are currently being carried out by numerous investigators. 

In this work we wish to present a simple and accurate method for dealing approxi- 
mately with ( l . l ) ,  with no restrictions attached in respect of the functional appearance 
of V ( x ) .  The paper is organised as follows. 

In § 2 we briefly sketch the Hill-Wheeler method and discuss its generalisation in 
§ 3. The appropriate generating functions are dealt with in § 4, two relevant examples 
which illustrate our proposal are given in § 5 and some conclusions are presented in 0 6. 

2. The Hill-Wheeler ansatz 

A very powerful scheme for tackling the many-body Schrodinger equation is that 
proposed by Hill and Wheeler (1953) and Griffin and Wheeler (1957), based upon the 
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where [@(a) ) ,  the so-called generating functions, are in general (although not 
necessarily) Slater determinants and the a-parameter( s)  ('generating coordinate( s)') 
refer to specially chosen coordinates that supposedly describe the particular many-body 
phenomena one is interested in. The weight function f ( a )  is determined by the 
variational principle 

where the expectation value of A and the normalisation factor can be written in terms 
of the 'Hamiltonian overlap kernel' ( H O K )  

h(a ,  P )  = ( @ ( m @ ( P ) )  (2.3) 
and the 'generator overlap kernel' (GOK) 

respectively as 
r r 

and 

(2 .6 )  

The variational principle (2.2) leads to the celebrated Hill-Wheeler ( HW) equations I daf(a) [h(P ,  a)-eNn(P, a)I=O (2.7) 

which can be solved by recourse to well established techniques (see, for example, 
Faessler et a1 1973). The Hill-Wheeler approach has been successfully applied to a 
wide variety of many-body problems (Ring and Schuck 1980), and it is our purpose 
here to take advantage of a recently proposed generalisation of this technique (Nuiiez 
er a1 1984) in order to find the eigensolutions of (1.1). 

3. A generalised Hill-Wheeler ansatz 

The idea of this generalisation is to assign to f ( a )  the character of a distribution 
(Nuriez et a1 1984) 

k 

f (a )  = c f ( ~ O ) ( - l ) n S c n ) ( a  -a01 
n=O 

so that, after the introduction of the so-called "states' (Nuiiez et a1 1984) 

I m, ao) = (-  l)"S(")( a - ao)l@( a ) )  d a  I 
(3.1) 

(3.2) 
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the following generalised ansatz ensues: 

It can be shown that the m-states provide us with a basis for the so-called collective 
subspace S ,  of the Hilbert space (Nufiez et a1 1984), which is the smallest subspace 
that contains all the generating states i@(a) ) .  Of course the limit k + o c  should be 
taken so as to deal with the entire subspace S , .  

Different approximations are obtained depending upon the number of terms ( K -  
value) considered in (3.3). Considerations involving computational accuracy and 
capability are to be employed in the selection of K (Nufiez et a1 1984). 

The variational principle 

leads to an eigenvalue problem for the moments f m ( a o )  of the distribution (3.1). We 
obtain 

( 3 . 5 )  

O,,,(ao) = (m ,  aoln, ao). (3.7) 
Recourse to well known techniques provides us with a satisfactory solution to our 
problem. A particular aspect of our approach deserves special comment: no approxima- 
tions are involved in writing down (3.5). 

4. Generating functions and m-states 

In order to construct m-states appropriate for the problem at hand we need first of 
all to avail ourselves with suitable generating functions. We start with the boson 
operators entering the second-quantisation expression for the harmonic oscillator 
Hamiltonian 

H"=a^Ta^+4 (4.1) 
and subject them to a displacement y (a  c-number) 

(4.2) 

since a general eotential well(s) V ( x )  will not necessarily be located at the origin. The 
vacuum of the 6 operators 10, y )  = 1 y )  

610, y )  = 0 (4.3) 
is an extremal state in the Fock space and thus a coherent 'ground' (or 'extremal') 
state (Gilmore 1974, Arecchi et a1 1972), which in the coordinate representation will 
have a Gaussian shape. This Fock space is spanned by the basis 

(b*+).'/O, Y) = vm, Y) j = 0, 1 ,2  . . . (4.4) 
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in which we shall express our generating functions as 
I P ) e  = e x p [ i ~ ( ~ ~ ) ' 1 1 0 ,  Y )  (4.5a) 
I P ) ~ =  G + I P ) e  (4.5b) 

where /3 is a real parameter (to be presently related to the generating coordinate) and 
the subscript e(o) indicates that the corresponding state is even (odd). The state (4.5~) 
is the vacuum of the operators 

i.e. 

= 0 

fit" (1 -P2)"21P)o. 

( Q I P ) e  = exp(-Q2/2) 

The ket has a Gaussian aspect in the coordinate representation 

(QtP>o= 0 exp(-QZ/2) 

(4.6) 

(4.7) 

(4.8) 

where, if we choose y to be real, Q is the eigenvalue of the (coordinate) operator 

with 

c = y ( l  - p ' ) .  
If we choose as the generating coordinate the quantity 

(4.9) 

(4.10) 

(4.11) 

and suitably redefine (4.5) in terms of it, we immediately find as the (coordinate 
representation) expression for our generating functions 

Qe(q X)  = ( x I w ) ~  = exp(-fw(x - C)') 

Q . , ( W , X ) = ( X ( ~ ) ~ = ( X - C )  e x p ( - - t w ( x - ~ ) ~ ) .  
(4.12) 

We are now in a position to write down our m-states ( [ m / 2 ]  denotes the integer part 
of m / 2 )  as 

(4.13) 

which in more explicit form is (notice that the subindex e(o) refers to the case m even 
(odd)) 

(4.14) 
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The coefficients S arise out of the derivatives in (4.5). An alternative expression 
can also be given in terms of the k operators 

n 

124 WO)= P;:n~(wo)(kt)2~16.Jo) 
, = o  

(4.15) 

with appropriate coefficients P. 

the case of the Hamiltonian ( 1 . 1 ) )  
The relevant matrix elements (3.6) and (3.7) for the states defined in (4.13) are (in 

Qjm + 2n) (4.16) 
4m( m + 2n) 
2(m + n )  - 1 

(mlAlm+2n)=(m/m+2n)  

(mlm + 2n + 1)  = 0 

with 

(4.18) 

(4.19) 

(4.20) 

(4.21) 

where G+, G- are appropriately constructed Laplace transforms of the potential V ( x )  

(4.22) 

(4.23) 

G+(wo)  = L { x - " ~ [  V (  c' +XI/')  + V (  C - x " ~ ) ] }  

G-(wo) = L{ V (  C + x " ~ )  - V (  C - x " ~ ) } .  

5. Examples 

We shall consider the following two examples: 

V ( X )  = tx' + AIx3 + A2x4 

namely, a cubic plus quartic anharmonic oscillator and 

(5 .1 )  

V(x) = A(e-*" -2e-") (5.2) 
i.e. the Morse potential. 

The selection of k in (3 .1)  is made according to the usual procedure one follows 
in facing generalised diagonalisation problems: one must be sure that the overlap 
matrix 0 of (3 .5)  has no zero eigenvalues. The size of k is then limited by the 
requirement that no such eigenvalue be smaller than a given positive constant E ( 
in this work). Of course, an a posteriori and rather obvious criterion is that of cutting 
the number of momentsf, in (3.1) when one verifies, by inspection, that 'convergence' 
has been achieved (Nuiiez et a1 1984). 
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Table 2. The Morse potential. Exact and GCM energies for different values of A. 

-0.25 
-1.517 949 2 
-0.053 847 6 
-7.087 722 3 
-2.763 167 0 
-0.438 61 1 7 

-1 1.377 016 65 
-5.631 050 0 
- 1.885 083 2 
-0.139 116 6 

-24.772 774 42 
-15.818 323 3 

-8.863 872 12 
-3.909 420 97 
-0.954 969 824 

-0.249 599 1 
-1.517 943 5 

0.003 400 2 
-7.087 722 2 
-2.762 424 7 
-0.264 772 3 

-11.377 01663 
-5.630 919 0 
-1.835 1763 
-0.952 249 9 

-24.772 774 42 
-15.818 3169 

-8.860 636 79 
-3.696 008 79 

1.135 178 18 

The free parameters C and w0 of the preceding section are chosen so as to comply 
with the rather obvious requirements 

a 
- (0, W " l f i 1 0 ,  W O )  = 0 
amo 

a 
- (0, W o l A I O ,  W O )  = 0 
aC 

(5.3) 

and the corresponding results are given in tables 1 and 2, for the anharmonic and 
Morse cases respectively. We take advantage of the theorem of separation (of eigen- 
values (Pilar 1968)) in order to provide upper bounds not only for the ground state 
but also for the excited states. The results are quite good and faithfully exhibit the 
power of our formalism. 

6. Conclusions 

The main idea of the present work has been that of adapting a rather powerful, recently 
developed many-body technique (Nuhez er a1 1984) to the study of the eigensolutions 
of a general one-dimensional Hamiltonian (1.1). The concomitant numerical work 
turns out to be very simple (just a diagonalisation of modest 'size') and the accuracy 
to be reached is limited only by the technical details of the computer one uses. It 
should be stressed that no restrictions are imposed on the form of the potential V ( x )  
contrary to other approximate treatments. From a more theoretical point of view it is 
also of interest to point out that in P 4 we give a concrete example of an expansion 
(cf (4.15)) in terms of a basis that spans the so-called 'collective subspace' (Wong 
1970, de Toledo Piza et a1 1977). This subspace appears here in a natural fashion, 
without recourse to any sophisticated mathematical reasoning (Wong 1970, de Toledo 
Piza et a1 1977). One may assert that the present approach is flexible enough to be 
employed in a wide variety of related problems. 
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